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Formation of 2-oxa- or 2-azabicyclo[3.3.0]octa-3,7-diene by a novel tandem
intramolecular photo-cyclization of 2,4,6-tris(phenylthio)hepta-2,4,6-trienal
derivatives
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The photo-reactions of 2,4,6-tris(phenylthio)hepta-2,4,6-tri-
enal 1 and its 2,4-dinitrophenylhydrazone 5 gave the 2-oxa-
or 2-azabicyclo[3.3.0]octa-3,7-dienes 2 and 9, respectively,
via a photo-induced intramolecular tandem cyclization
reaction.

The Paterno–Büchi reaction has become increasingly familiar
to chemists engaged in investigation of its mechanism or
synthetic applications.1 The widespread advances in this area of
synthetic organic chemistry have led to convenient method-
ology for the preparation of the oxetane-containing biologically
active materials.2 Intramolecular photo-reactions of the viny-
loxy w-carbonyl compounds and their furan derivatives usually
provides the fused oxetane ring compounds,3 which lead to
other useful compounds by successive transformations.4

Recently, we reported the tandem a-(thio)- or a-(seleno)-
formylolefination reactions of the aldehydes.5 Three cycles of
the olefination process with pivalaldehyde stereoselectively
afforded (2E, 4E, 6E)-8,8-dimethyl-2,4,6-tris(phenylthio)nona-
2,4,6-trienal 1, which contains three conjugated vinyl sufide
moieties. This trienal 1 was found to be light-sensitive like the
retinal chromophores.6 This result prompted us to investigate
the reactivities of the trienal under photo-irradiation conditions;
surprisingly, a new ring system, oxabicyclo[3.3.0]octa-
3,7-diene, was formed via an unusual photo-cyclization. Here
we report the unprecedented intramolecular tandem cyclization
reaction of trienal 1.

Irradiation of an Ar saturated solution of 1 in MeCN (1.0 3
1023 mol l21) using a 40 W fluorescent daylight lamp afforded
(1R*, 5R*, 6S*)-6-tert-butyl-1,4,7-tris(phenylthio)-2-oxabicy-
clo[3.3.0]octa-3,7-diene 27 in 54% yield as shown in Scheme 1.
The structure of 2 followed from the fact that the IR spectrum
showed no carbonyl absorption, while the 1H NMR spectrum
showed two methine protons at d 2.82 (t, J 2) and 3.40 (t, J 2)
and two olefinic protons at d 5.07 (s) and 6.50 (d, J 2). The
stereochemistry of oxabicyclo compound 2 was determined as
(1R*, 5R*, 6S*) by single crystal X-ray analysis; the ORTEP
drawing of 2 is shown in Fig. 1.8 Furthermore, a few
fundamental reactions of 2 were examined using oxidizing
agents. MCPBA oxidation of 2 gave the corresponding sulfone
3 in 78% yield (Scheme 2). The reaction with Pd–C in toluene
under reflux conditions afforded the ring-opened cyclopenta-
diene 4 in 40% yield. The structure of 4 was determined from
the IR spectrum, which showed the carbonyl absorption at n
1650 cm21, the 1H NMR spectrum, which exhibited two
doublets at d 6.54 (d, J 7) (due to the olefinic proton) and 11.13

(d, J 7) (due to the aldehyde proton), and the mass spectrum,
which showed a molecular ion peak (C28H22OS) at m/z 378. The
stereochemistry of 4 was determined as Z by an NOE
experiment. Irradiation of the tert-butyl protons at d 1.22
increased the intensity of the olefinic proton at d 6.54 (4%).

Next, we examined the photo-reaction of the trienal hydra-
zone 5, irradiating at 400–500 nm in benzene to give
2-azabicyclo[3.3.0]octa-3,7-diene 6 in 41% yield (Scheme 3).9

Scheme 1 Reagents and conditions: i, hn (500–600 nm), MeCN.

Fig. 1 ORTEP drawing of 2.

Scheme 2 Reagents and conditions: i, MCPBA, ClCH2CH2Cl; ii, Pd–C,
toluene.

Scheme 3 Reagents and conditions: i, hn (400–500 nm), benzene; ii, AIBN,
benzene, reflux.
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Recently, we reported that the 2,4-dinitrophenylhydrazones
reacted with AIBN and underwent dearylamination.10 Treat-
ment of the hydrazone 6 with AIBN in benzene afforded
2-azabicyclo[3.3.0]octa-3,5,7-triene 7 in good yield.

A plausible mechanism for formation of the photo-reaction
products is shown in Scheme 4. Intermolecular [2 + 2]
photocycloadditions have been intensively investigated and
have indicated that the reaction intermediate is a flexible
1,4-biradical.11 Our intramolecular cyclization would also
proceed via triplet biradical intermediates and cyclize in 5-exo
mode to give the 1,4-biradical 9. Isomerization of 9 affords a
1,5-biradical 10. Tandem cyclization leads to the bicyclo-
[3.3.0]octa-3,7-diene 11.

In conclusion, 2,4,6-tris(phenylthio)hepta-2,4,6-trienal de-
rivatives are highly sensitive to light and their photo-reactions
were found to afford the 2-oxa- or 2-azabicyclic compounds via
a unique tandem cyclization reaction.
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