# Formation of 2-oxa- or 2-azabicyclo[3.3.0]octa-3,7-diene by a novel tandem intramolecular photo-cyclization of 2,4,6-tris(phenylthio)hepta-2,4,6-trienal derivatives 

Mitsuhiro Yoshimatsu, ${ }^{* a}$ Satoshi Gotoh, ${ }^{a}$ Genzoh Tanabe ${ }^{b}$ and Osamu Muraoka ${ }^{b}$<br>${ }^{a}$ Department of Chemistry, Faculty of Education, Gifu University, Yanagido, Gifu 501-1193, Japan. E-mail: yoshimae@gumail.cc.gifu-u.ac.jp<br>${ }^{\text {b }}$ Kinki University, Faculty of Pharmaceutical Sciences, 3-4-1, Kowakae, Higashi-osaka, Osaka 577-8502, Japan

## Received (in Cambridge, UK) 3rd March 1999, Accepted 12th March 1999

The photo-reactions of 2,4,6-tris(phenylthio)hepta-2,4,6-trienal 1 and its 2,4-dinitrophenylhydrazone 5 gave the 2-oxaor 2-azabicyclo[3.3.0]octa-3,7-dienes 2 and 9, respectively, via a photo-induced intramolecular tandem cyclization reaction.

The Paterno-Büchi reaction has become increasingly familiar to chemists engaged in investigation of its mechanism or synthetic applications. ${ }^{1}$ The widespread advances in this area of synthetic organic chemistry have led to convenient methodology for the preparation of the oxetane-containing biologically active materials. ${ }^{2}$ Intramolecular photo-reactions of the vinyloxy $\omega$-carbonyl compounds and their furan derivatives usually provides the fused oxetane ring compounds, ${ }^{3}$ which lead to other useful compounds by successive transformations. ${ }^{4}$
Recently, we reported the tandem $\alpha$-(thio)- or $\alpha$-(seleno)formylolefination reactions of the aldehydes. ${ }^{5}$ Three cycles of the olefination process with pivalaldehyde stereoselectively afforded ( $2 E, 4 E, 6 E$ )-8,8-dimethyl-2,4,6-tris(phenylthio)nona-2,4,6-trienal 1, which contains three conjugated vinyl sufide moieties. This trienal $\mathbf{1}$ was found to be light-sensitive like the retinal chromophores. ${ }^{6}$ This result prompted us to investigate the reactivities of the trienal under photo-irradiation conditions; surprisingly, a new ring system, oxabicyclo[3.3.0]octa-3,7-diene, was formed via an unusual photo-cyclization. Here we report the unprecedented intramolecular tandem cyclization reaction of trienal 1.

Irradiation of an Ar saturated solution of $\mathbf{1}$ in $\mathrm{MeCN}(1.0 \times$ $10^{-3} \mathrm{~mol} \mathrm{l}^{-1}$ ) using a 40 W fluorescent daylight lamp afforded ( $1 R^{*}, 5 R^{*}, 6 S^{*}$ )-6-tert-butyl-1,4,7-tris(phenylthio)-2-oxabicy-clo[3.3.0]octa-3,7-diene $\mathbf{2}^{7}$ in 54\% yield as shown in Scheme 1. The structure of $\mathbf{2}$ followed from the fact that the IR spectrum showed no carbonyl absorption, while the ${ }^{1} \mathrm{H}$ NMR spectrum showed two methine protons at $\delta 2.82(\mathrm{t}, J 2)$ and $3.40(\mathrm{t}, J 2)$ and two olefinic protons at $\delta 5.07$ (s) and 6.50 (d, J 2). The stereochemistry of oxabicyclo compound 2 was determined as $\left(1 R^{*}, 5 R^{*}, 6 S^{*}\right)$ by single crystal X-ray analysis; the ORTEP drawing of 2 is shown in Fig. 1.8 Furthermore, a few fundamental reactions of 2 were examined using oxidizing agents. MCPBA oxidation of $\mathbf{2}$ gave the corresponding sulfone 3 in $78 \%$ yield (Scheme 2). The reaction with $\mathrm{Pd}-\mathrm{C}$ in toluene under reflux conditions afforded the ring-opened cyclopentadiene $\mathbf{4}$ in $40 \%$ yield. The structure of $\mathbf{4}$ was determined from the IR spectrum, which showed the carbonyl absorption at $v$ $1650 \mathrm{~cm}^{-1}$, the ${ }^{1} \mathrm{H}$ NMR spectrum, which exhibited two doublets at $\delta 6.54(\mathrm{~d}, J 7)$ (due to the olefinic proton) and 11.13


Scheme 1 Reagents and conditions: i, $h v$ (500-600 nm), MeCN


Fig. 1 ORTEP drawing of $\mathbf{2}$


Scheme 2 Reagents and conditions: i, MCPBA, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$; ii, $\mathrm{Pd}-\mathrm{C}$, toluene.
(d, $J 7$ ) (due to the aldehyde proton), and the mass spectrum, which showed a molecular ion peak $\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{OS}\right)$ at $m / z 378$. The stereochemistry of $\mathbf{4}$ was determined as $Z$ by an NOE experiment. Irradiation of the tert-butyl protons at $\delta 1.22$ increased the intensity of the olefinic proton at $\delta 6.54(4 \%)$

Next, we examined the photo-reaction of the trienal hydrazone 5, irradiating at $400-500 \mathrm{~nm}$ in benzene to give 2-azabicyclo[3.3.0]octa-3,7-diene 6 in $41 \%$ yield (Scheme 3). ${ }^{9}$


Scheme 3 Reagents and conditions: i, $h v(400-500 \mathrm{~nm})$, benzene; ii, AIBN, benzene, reflux.


## Scheme 4

Recently, we reported that the 2,4-dinitrophenylhydrazones reacted with AIBN and underwent dearylamination. ${ }^{10}$ Treatment of the hydrazone 6 with AIBN in benzene afforded 2-azabicyclo[3.3.0]octa-3,5,7-triene 7 in good yield.
A plausible mechanism for formation of the photo-reaction products is shown in Scheme 4. Intermolecular [2 + 2] photocycloadditions have been intensively investigated and have indicated that the reaction intermediate is a flexible 1,4-biradical. ${ }^{11}$ Our intramolecular cyclization would also proceed via triplet biradical intermediates and cyclize in 5-exo mode to give the 1,4-biradical 9 . Isomerization of $\mathbf{9}$ affords a 1,5 -biradical 10. Tandem cyclization leads to the bicyclo-[3.3.0]octa-3,7-diene 11.
In conclusion, 2,4,6-tris(phenylthio)hepta-2,4,6-trienal derivatives are highly sensitive to light and their photo-reactions were found to afford the 2-oxa- or 2-azabicyclic compounds via a unique tandem cyclization reaction.

## Notes and references

1 J. A. Porco and S. L. Schreiber, Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon, New York, 1991, vol. 5, p. 151.
2 S. S. Bhagwat, P. R. Hamann, W. C. Still, S. Bunting and F. A. Fitzpatrick, J. Am. Chem. Soc., 1985, 107, 6372; S. S. Bhagwat, P. R. Hamann, W. C. Still, S. Bunting and F. A. Fitzpatrick, Nature, 1985, 315, 511; D. W. Norbeck and J. B. Kramer, J. Am. Chem. Soc., 1988, 110, 7217; Y. Kawahata, S. Takatsuto, N. Ikekawa, M. Murata and S. Omura, Chem. Pharm. Bull., 1986, 34, 3102.
3 M. Sakamoto, Y. Omote and H. Aoyama, J. Org. Chem., 1984, 49, 396; G. Pattenden and A. M. Birch, J. Chem. Soc., Chem. Commun., 1980,

1195; M. J. Begley, A. M. Birch and G. Pattenden, J. Chem. Soc., Chem. Соттип., 1979, 235.
4 H. A. J. Carless, J. Beanland and S. Mwesigye-Kibonde, Tetrahedron Lett., 1987, 28, 5933; M Riediker and J. Schwartz, J. Am. Chem. Soc., 1982, 104, 5842; K. Maruyama and Y. Kubo, J. Org. Chem., 1977, 42, 3215; P. H. Mazzocchi, L. Klingler, M. Edwards, P. Wilson and D. Shook, Tetrahedron Lett., 1983, 24, 143.
5 M. Yoshimatsu, K. Oguri, K. Ikeda and S. Gotoh, J. Org. Chem., 1998, 63, 4475.
6 Q. Tan and K. Nakanishi, J. Am. Chem. Soc., 1998, 120, 12357 and references cited therein.
7 Selected data for 2: $v_{\max } / \mathrm{cm}^{-1} 1130$ (ether); $\delta_{\mathrm{H}} 0.91(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3)$, $2.82(1 \mathrm{H}, \mathrm{t}, J 2,6-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{t}, J 2,5-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 6.50(1 \mathrm{H}$, $\mathrm{d}, J 2,3-\mathrm{H}), 6.55-6.59(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.01-7.07(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.36-7.42 (5H, m, ArH), 7.46-7.51 (3H, m, ArH), 7.60-7.62 ( $2 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{C}} 28.60(\mathrm{q} \times 3), 34.54(\mathrm{~s}), 54.53$ (d), 64.28 (d), 107.23 (s), 107.77 (s), $123.29(\mathrm{~d}), 125.03(\mathrm{~d} \times 2), 126.16(\mathrm{~d}), 128.89(\mathrm{~d} \times 2)$, $129.00(\mathrm{~d}), 129.07(\mathrm{~d}), 129.15(\mathrm{~d} \times 2), 129.57(\mathrm{~d} \times 2), 131.19(\mathrm{~s} \times 2)$, $132.13(\mathrm{~s}), 132.46(\mathrm{~d} \times 2), 135.95(\mathrm{~d} \times 2), 150.10(\mathrm{~d}), 150.65(\mathrm{~s}) ; \mathrm{m} / \mathrm{z}$ $488\left(\mathrm{M}^{+}\right)\left(\right.$Calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{OS}_{3} ; \mathrm{C}, 71.27 ; \mathrm{H}, 5.77$. Found: C, $71.12 ; \mathrm{H}$, $5.77 \%$ ).
8 Crystal data for $2: \mathrm{C}_{29} \mathrm{H}_{28} \mathrm{OS}_{3} M=488.72$, monoclinic, $a=9.007(2)$, $b=26.879(6), c=10.945(2) \AA, \beta=99.34(2)^{\circ}, V=2614.7(9) \AA^{3}, T$ $=298 \mathrm{~K}$, space group $P 2_{1} / n, Z=4, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=2.728 \mathrm{~mm}^{-1}, D_{\mathrm{c}}=$ $1.214 \mathrm{Mg} \mathrm{m}^{-3}$, 4284 reflections collected (Rigaku AFC5R diffractometer) of which 4096 were unique $\left(R_{\text {int }}=0.030\right)$ and 2720 were observed $[I>3.00 \sigma(I)$ ]. Solved by direct methods (MITHRIL90 and DIRDIF) and refined by full-matrix least-squares (teXsan) on $F$ of all unique data to $R=0.056$ (observed data), $\mathrm{wR}=0.070$ (all data). CCDC 182/1222. See http://www.rsc.org/suppdata/cc/1999/909/ for crystallograpic files in .cif format.
9 Selected data for 6: $v_{\max } / \mathrm{cm}^{-1} 3330(\mathrm{NH}), 1620,1340\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}} 1.28$ $(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 4.47(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 6.47(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$, $6.57(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{ArH}), 7.07-7.40(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $8.13(1 \mathrm{H}, \mathrm{dd}, J 2$ and 10 ArH$), 9.02(1 \mathrm{H}$, br d, $J 2, \mathrm{ArH}), 10.06(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}} 30.39(\mathrm{q} \times 3), 33.85(\mathrm{~s}), 67.58(\mathrm{~d}), 101.02(\mathrm{~s}), 114.20(\mathrm{~d})$, 121.73 (s), 123.65 (d), 123.71 (d), 125.69 (d), 126.19 (d), 126.42 (d), $126.66(\mathrm{~d} \times 2), 128.23(\mathrm{~d}), 128.45(\mathrm{~d} \times 2), 128.98(\mathrm{~d}), 129.24(\mathrm{~d})$, 129.30 (d), 129.58 (s), 130.52 (d), 130.82 (s), 132.17 (d $\times 2$ ), 132.74 (s), 133.92 (d), 133.98 (d), 134.08 (s), 138.33 (s), 138.68 (s), 140.31 (d), $147.70(\mathrm{~s}), 152.78(\mathrm{~d}) ; m / z 429\left[\mathrm{M}^{+}-\left(\mathrm{Bu}^{\mathrm{t}}+\left(\mathrm{O}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right)\right]$ (Calc. for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}: \mathrm{C}, 62.85 ; \mathrm{H}, 4.82 ; \mathrm{N}, 8.38$. Found: C, 62.71; H, 5.23; N, 7.96\%).
10 M. Yoshimatsu, S. Gotoh, K. Ikeda and M. Komori, J. Org. Chem., 1998, 63, 6619.
11 A. G. Griesbeck, S. Buhr, M. Fiege, H. Schmickler and J. Lex, J. Org. Chem., 1998, 63, 3847.

